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Abstract 

Data collection, analysis, and forecasting are increasingly vital in industrial settings, and 

various methods are being studied and utilized for effective data analysis and forecasting. 

Time series exhibits dynamic characteristics corresponding to manufacturing production 

processes and can provide valuable insights for process analysis and forecasting. This study 

proposes an approach to analyzing time series data on the thickness of steel plates in rolling 

processes using the ARIMAX (Autoregressive Integrated Moving Average with Exogenous 

variables) model, followed by further analysis and prediction of the residuals using the 

LSTM (Long Short-Term Memory) model. As the ARIMAX model alone may not fully 

capture the complex nonlinear patterns and long-term dependencies inherent in time series 

data, its performance in prediction can be limited. In this paper, we demonstrate that 

combining the ARIMAX model with LSTM improves the prediction of these intricate 

nonlinear characteristics observed in the time series data of the steel plate thickness during 

the rolling process, providing useful insights for various field applications. 

 

Keywords: ARIMAX, LSTM, steel plate thickness, residuals 

JEL: Q02 

 

 

 

 

 

____________________ 

*Contact author: Email tyjung@shinsung.ac.kr, Phone: +82.41.350.1534 

 

 

 

 

 

mailto:tyjung@shinsung.ac.kr


Jung, Kim, Baek & Yoo/PPJBR  Vol 15, No.2, Fall 2024, pp 23-30 

24 
 

1.  Introduction 

Time series analysis and forecasting are widely used in various industries to analyze data 

patterns over time and predict future data changes. To analyze and forecast time series data, 

diverse probabilistic models are used, among which the ARIMA model is one of the most 

well-known and widely used. The ARIMA model, combining autoregressive (AR) and 

moving average (MA) models with differencing, is effective for analyzing the linear 

properties of basic time series data. The application of the ARIMA model for data forecasting 

has been widely studied, and the research by D. Aborass and A. H. Hassan demonstrates a 

predictive analysis using ARIMA. However, it has limitations when analyzing data with 

nonlinear characteristics. This limitation has been addressed in researches including those by 

P. G. Zhang (2003), P. T. Yamak (2019), P. Liu (2022) and A. A. Alsuwaylimi (2023). 

Therefore, another model capable of analyzing nonlinear characteristics is required for more 

accurate forecasting. 

Artificial neural networks (ANNs) can be used to analyze and forecast such nonlinear 

characteristics. However, typical ANNs may experience issues like long-term dependency 

problems or vanishing gradients, which can reduce prediction accuracy. To address these 

limitations, deep learning-based methods like the Long Short-Term Memory (LSTM) model, 

designed to overcome issues with RNNs, are successfully applied to time series analysis and 

forecasting. However, because time series data often exhibit both linear and nonlinear 

characteristics, a hybrid ARIMA-LSTM model that analyzes the linear characteristics with 

an ARIMA model and applies LSTM to the residuals, which contain nonlinear 

characteristics, is expected to be more efficient and reliable by reducing slow learning times 

and overfitting risks associated with LSTM-only analysis. To analyze and predicted time 

series data with both linear and nonlinear characteristics, the integrated approach of ARIMA 

and LSTM has been researched by S. Siami-Namini (2018), D. Xu (2021), and P. Liu (2022), 

demonstrating improved results. 

In this study, we aim to predict the thickness of steel plates in rolling processes by 

analyzing data related to rolling conditions and comparing the prediction accuracy to actual 

measured thicknesses. Plate steel, manufactured through hot rolling, is classified into 

categories like shipbuilding, structural, pressure vessel, and plate steel, each with critical 

dimensional quality requirements. The hot rolling process is a time-continuous process. In 

the hot rolling process, the rolling conditions are continuously changed within the same line’s 

rolling operation to produce plates of varying thickness according to order specification. At 

the moment the rolling conditions changed, thickness deviations occur in the plates, which 

can lead to product quality defects. If it is possible to predict the thickness deviations that 

may occur during the process of changing rolling conditions, appropriate control measures 

(e.g., roll gap adjustments) considering the thickness deviations can be implemented to 

reduce the deviations. 

This study applies the hybrid ARIMA-LSTM model to the time series data of rolling 

conditions to analyze and predict both linear and nonlinear characteristics. 

 

2.  Methodology 

2.1. Description of Data 

Steel plates are thick sheets (6mm or thicker) produced through hot rolling processes. Plate 

manufacturing can be classified into as-rolled (AR) and controlled rolling (CR), depending 

on the control of finishing rolling temperature (FRT). Controlled rolling allows for finer 

microstructure and improved strength and toughness by controlling the reduction rate in the 

non-recrystallized region. Differences in FRT and target tensile strength (TS) between these 

two methods affect plate thickness deviation. Additionally, changes in target thickness and 
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rolling load can cause thickness deviation. Generally, in the hot rolling process, the thickness 

is controlled by adjusting the roll gap. If the thickness deviations caused by changed in rolling 

conditions can be predicted, the roll gap can be adjusted accordingly to account for the 

predicted deviation. 

In this study, we predict plate thickness based on actual thickness data as the output and 

factors affecting thickness deviation, such as FRT, target thickness, tensile strength, and 

rolling load as inputs. 

In addition, the hot rolling process is a time-continuous process, and therefore, the data 

mentioned above can be regarded as time series data. 

 

2.2. ARIMA and ARIMAX Model 

The ARIMA model, combining the AR (Autoregressive) and MA (Moving Average) 

models, is widely used for time series forecasting. The AR model constructs a time series 

model based on the autocorrelation of data, predicting future values through a linear 

combination of past and current values. Meanwhile, the MA model linearly derives values 

from past error terms that affect the current value. The combination of AR and MA models 

can be expressed as follows: 

 

 𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞     (1) 

 

Here, p is the order used in the AR(p) representation, with ∅1, ∅2 , and ∅𝑝 representing the 

AR model coefficients according to the order p. The terms 𝑦𝑡−1, 𝑦𝑡−2, and 𝑦𝑡−𝑝 are the past 

observations over periods. The parameter q is used to represent the MA(q) form, where 𝜃1, 

𝜃2, and 𝜃𝑞 are the MA model coefficients, and 𝜖𝑡−1, 𝜖𝑡−2 and 𝜖𝑡−𝑞 represent past error terms 

over q periods. The ARIMA model combines the AR and MA models, adding differencing of 

order d. The ARIMAX (Autoregressive Integrated Moving Average with Exogenous 

Variables) model extends the ARIMA model by including exogenous variables, which are 

external factors affecting the time series data. 

 

2.3. LSTM Model 

The Long Short-Term Memory (LSTM) model is a specialized form of the Recurrent 

Neural Network (RNN), designed to overcome certain limitations of RNNs. RNNs are 

artificial neural networks intended for deep learning with time series or sequential data. Their 

structure includes hidden states and loops, allowing previous computations to influence 

future outcomes. However, RNNs face challenges, particularly in retaining long-term 

dependencies, as information from earlier data often fades over time. To address this issue, 

the LSTM model was introduced. 

LSTM enhances the basic RNN structure by incorporating a cell state, which enables the 

flow of information to be retained across time steps, thus addressing the vanishing gradient 

problem. The LSTM model consists of three main gates:  Forget Gate, Input Gate, and Output 

Gate, which control the cell state's information flow:  

 

● Forget Gate decides whether to retain or discard past information. Using the 

sigmoid activation function, the output approaches 0 to discard information 

or 1 to retain it. 

● Input Gate determines how much current information to store in the cell state. This 

gate uses both sigmoid and tanh activation functions to calculate the gate's output. 

● Output Gate calculates what value to output from the cell, adjusting it based on the 

current information and the cell state value, allowing relevant information to be 
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reflected in the output. 

 

2.4. Hybrid ARIMA-LSTM Model 

The ARIMAX model is effective in forecasting when data exhibits linear characteristics; 

however, real-world data often contains both linear and nonlinear properties. Using the 

ARIMAX model alone may therefore fall short in predicting the nonlinear aspects of the 

data. Specifically, the residuals, which represent the error between the predicted and 

observed values, may contain nonlinear characteristics that are difficult to analyze using a 

purely linear structure.  

 

In the equation (2) 

 

                                                   𝑅𝑒 = 𝐷𝑜𝑏 − 𝐷𝐿−𝑒𝑠𝑡                                                             (2) 

 

where 𝐷𝑜𝑏 denotes the actual observed value and 𝐷𝐿−𝑒𝑠𝑡  represents the predicted value 

generated by the ARIMAX model, 𝑅𝑒 is the residual, or the difference between the observed 

and predicted values. This residual, being what the ARIMAX model cannot account for, 

reflects the nonlinear component that remains after the linear elements have been modeled. 

Since the ARIMAX model cannot model nonlinear characteristics effectively, it is 

advantageous to analyze and predict these residuals using an artificial neural network (ANN) 

model, particularly the LSTM. The hybrid ARIMAX-LSTM approach proposed in this study 

leverages both the linear and nonlinear attributes of the data. First, the ARIMAX model 

analyzes the data's linear components to form the initial predictions. Next, the residuals, or 

the difference between the observed and ARIMAX-predicted values, are calculated and 

further analyzed with the LSTM model to capture the nonlinear characteristics. 

By applying the hybrid ARIMAX-LSTM model, this method combines predictions from 

both linear and nonlinear analyses, ultimately improving the overall forecasting performance. 

 

3. Data Analysis and Prediction 

3.1 Data Sets 

The data used in the simulation consists of measurements from actual steel industry 

operations, specifically related to changes in plate thickness due to the rolling process. This 

dataset includes output data representing the thickness of plates and key input variables that 

are considered to influence thickness deviations in the rolling process, such as Finishing 

Rolling Temperature (FRT), tensile strength, target thickness, and rolling load. These 

thickness deviation factors are treated as exogenous variables in the ARIMAX model, with 

50% of the data used for training and the remaining 50% reserved as test data for validating 

the prediction results. 

For the LSTM model, the actual observed plate thickness serves as the output. Inputs 

include the rolling process parameters (FRT, tensile strength, target thickness, rolling load) 

and residuals calculated from the ARIMAX model’s predictions. The LSTM model uses 

these inputs to learn and enhance the accuracy of the overall forecasting. 

 

3.2 ARIMAX Model Setting 

The comparison of settings for the AR(p) and MA(q) orders for the ARIMA or ARIMAX 

model, including exogenous variables, is shown in Table 3.1: 

 



Jung, Kim, Baek & Yoo/PPJBR  Vol 15, No.2, Fall 2024, pp 23-30 

27 
 

Table 3.1  

RMSE Comparison of AR(p), Differencing(d) and MA(q) orders 

AR(p) order Differencing(d) order MA(q) order RMSE 

1 0 1 5.1771 

1 1 1 335.8647 

2 0 2 5.1745 

3 0 2 5.1766 

3 0 3 5.1725 

4 0 4 5.1752 

 

As indicated in Table 3.1, the optimal configuration for the ARIMAX model for 

forecasting the data is when the RMSE (Root Mean Squared Error) value is minimized. The 

best setting is p=3, d=0, q=3, with the lowest RMSE of 5.1725. 

 

3.3 LSTM Model Setting 

The main settings that impact the performance of the LSTM model include the number of 

hidden units, the maximum number of epochs, and the mini-batch size. These settings were 

adjusted, and the RMSE (Root Mean Squared Error) values were compared to finding the 

configuration with the lowest RMSE. Additionally, an initial learning rate of 0.01 was set, 

and a dropout rate of 50% was applied to improve model generalization and prevent 

overfitting. 

Table 3.2 below shows how changes in these key settings affect the RMSE values. The 

configuration that achieved the minimum RMSE of 4.3724 consisted of 25 hidden units, a 

maximum of 1400 epochs, and a mini-batch size of 25. This RMSE reflects the difference 

between the LSTM model’s predictions and the actual residuals derived from the ARIMAX 

predictions versus observed values. 

 

Table 3.2 

RMSE Comparison of setting parameters of LSTM 

No. Hidden Units Max. Epochs Mini-Batch Size RMSE 

25 1400 25 4.3718 

25 1800 25 4.4061 

25 1400 10 4.3791 

50 1400 25 4.4071 

50 1400 20 4.4029 

100 1200 25 4.3804 

100 1400 25 4.3868 

 

3.4 Hybrid ARIMAX-LSTM Model Forecasting 

The ARIMAX model, which incorporates external variables influencing plate thickness 

deviation, is used to predict plate thickness in the rolling process. After obtaining predictions 
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from the ARIMAX model, the residuals (errors between the predicted and actual values) are 

then predicted using the LSTM model. Finally, the ARIMAX and LSTM predictions are 

integrated, and the combined forecast is compared to the actual observed values. 

To assess the effectiveness of this hybrid approach, the RMSE (Root Mean Squared Error) 

is calculated for both the standalone ARIMAX model and the integrated ARIMAX-LSTM 

model. This comparison demonstrates the improvement in prediction accuracy achieved by 

the hybrid model over the ARIMAX model alone. 

Figure 3.1 

ARIMAX-LSTM prediction of plate thickness 

 
 

The graph displays the predicted plate thickness in the rolling process using the ARIMAX-

LSTM hybrid model, configured with AR(3) and MA(3) for the ARIMAX component, 

alongside the actual observed values. The standalone ARIMAX model yields a prediction 

RMSE of 5.1766 when compared to the observed values, while the integrated ARIMAX-

LSTM model achieves an improved RMSE of 4.3724. This indicates that the hybrid model 

provides a more accurate prediction, significantly reducing the error compared to the 

ARIMAX model alone. 

Table 3.3 

 RMSE Comparison of ARIMAX and ARIMAX-LSTM 

 RMSE 

ARIMAX (p, d, q = 3, 0, 3) 5.1766 

ARIMAX(3,0,3)+LSTM 4.3718 

 15.5471(%) error reduction 

 

As shown in Table 3.3 above, comparing the RMSE values indicates that the ARIMAX-

LSTM model achieves approximately a 15.5% reduction in error compared to the ARIMAX 
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model alone. This demonstrates that the ARIMAX-LSTM hybrid model performs better in 

predicting plate thickness, providing improved accuracy. 

 

4. Conclusion 

In the time series data analysis and forecasting, the ARIMA model has shown strong 

predictive capabilities. However, due to its nature of only analyzing and predicting the linear 

portion of data, it faces limitations when dealing with errors and nonlinear characteristics. 

To effectively analyze and predict both the linear and nonlinear properties of such data, the 

ARIMAX-LSTM hybrid model is applied. As the prediction results indicate, the RMSE of 

the standalone ARIMAX model (5.1766) decreases to 4.3718 when using the ARIMAX-

LSTM hybrid model, demonstrating an error reduction of approximately 15.5471%. 

By leveraging the strengths of the ARIMAX model for linear features and the LSTM 

model for nonlinear features, the integrated ARIMAX-LSTM model proves to be an effective 

method for improving prediction performance. 

      If applied to an online model in an actual production site in the future, the predicted 

thickness deviations can be reflected in roll gap adjustments, which is expected to reduce 

quality costs caused by dimensional defects in steel plate when rolling conditions change 

rapidly. 
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